天才一秒记住本站地址:[乐阅读]
https://www.leduxs.com/最快更新!无广告!
√
)2、线性回归模型的目标函数为残差平方和最大化(残差平方和最小化
)3、特征向量中心度度量节点在网络中的影响力。网络中每个节点被赋予一个影响力分数,一个节点与更多的高分节点相连,其分数也趋向于更高。(
√
)4、强化学习使用已标记的数据,根据延迟奖励学习策略。(
未标记的数据,通过与环境的交互来收集数据进行学习
)5、过拟合是机器学习中一个重要概念,是指模型过于复杂,导致对测试数据预测很好,但对训练数据预测很差。(
对训练数据预测很好,对测试数据预测很差
)三、分析题(本题满分30分,共含5道小题,每小题6分)1、现有样本如下:0,2,3,4,5,6,7,8,9,10,41,42,43,44,45,46,47,48,49,50。使用等距离散化来处理该样本,将样本分为5个区间段。有几个区间内样本容量不为0?你的答案:2你的计算过程:首先,计算样本的最小值和最大值:最小值:0最大值:50然后,确定分为5个区间时的间距:(最大值
最小值)
/
区间数
=
(50
0)
/
5
=
10接下来,以间距为10进行等距离散化:区间1:09
(共10个样本)区间2:1019
(无样本)区间3:2029
(无样本)区间4:3039
(无样本)区间5:4050
(共11个样本)根据以上结果,有2个区间段(区间2和区间3)内的样本容量不为0。请注意,这种等距离散化方式可能导致某些区间没有样本,而其他区间样本较多。2、随机森林采用的是什么集成方法?(A.
这种集成方法适用于什么情况?你的选择:bagging你的解释:Bagging(自举汇聚法)适用于以下情况:训练数据较少,需要尽可能充分利用现有的有限样本。数据集存在较强的噪声或离群点,需要通过多个模型的平均来减小噪声影响。需要降低模型的方差,提高模型的稳定性和鲁棒性。模型复杂度较高,容易过拟合,需要引入随机性增加泛化能力通过对原始训练集进行有放回的抽样,构建多个子模型。每个子模型相互独立地训练,并通过取平均值(回归问题)或投票(分类问题)的方式进行预测。随机森林就是一种基于Bagging思想的集成学习算法,它使用决策树作为基分类器,并通过对特征的随机选择进一步增加模型的多样性。由于Bagging的平行结构,随机森林可以有效处理大规模数据,具有较好的预测性能和计算效率。3、为了考察一种新的教学方法对学生英语成绩的影响,某学校进行了调查,共得到400个样本数据。数据表中GRADE为标签,PSI、GPA、TUC为特征为分类数据,取1表示学习成绩提高,0表示学习成绩没有提高;PSI为分类数据,取1表示接受了新的教学方法指导,0表示没有接受新的教学方法指导;GPA表示学生平均积分点,为数值型数据;TUC表示以往的学生成绩,为数值型数据。假如,想了解GPA、TUC和PSI对学生成绩是否有影响,以及预测学生学习成绩是否会提高,你会选择下述用哪个。
模型?为什么?(A.线性回归
B.逻辑回归
C.聚类
D.关联规则挖掘)你的选择:逻辑回归你的解释:逻辑回归是一种广泛应用于分类问题的机器学习算法。在这个情况下,我们的目标是预测学习成绩是否提高,这是一个二分类问题,即学习成绩提高或不提高。逻辑回归可以用来建立一个概率模型,根据给定的特征值(GPA、TUC和PSI),计算出学生成绩提高的概率。逻辑回归模型的输出是一个概率值,表示学生成绩提高的可能性。这使得我们能够根据学生的特征值进行预测,并判断他们学习成绩是否会提高。此外,逻辑回归还可以提供每个特征的权重系数,帮助我们理解各个特征对学生成绩的影响程度。线性回归
(A.线性回归)
也可用于这个问题,但它更适用于连续数值型的目标变量的预测,而不是二分类问题。聚类
(C.聚类)
是无监督学习方法,不适用于这个情况。关联规则挖掘
(D.关联规则挖掘)
通常用于发现数据中的频繁项集和关联关系,不太适合用于预测学生成绩的问题。因此,在给出的选项中,选择使用逻辑回归模型(B.逻辑回归)是合适的,它可以用于预测学生学习成绩是否会提高,并了解GPA、TUC和PSI对学生成绩的影响程度。4、Kmeans算法在给定数据集上运行第一次后的结果为,数据集分为三个簇:
cluster1:
(1,
3)、
(2,4);cluster2:
(4,
0)
、(2,
0);cluster3
:(0,
3)、
(0,
5)。样本(0,
3)和cluster2的质心之间的曼哈顿距离为:你的答案:5你的计算过程:Cluster2的质心:(4+2)/2=3;0样本的坐标是
(0,
3),Cluster
2
的质心是
(3,
0)。将给定的点代入公式,我们有:d
=
|3
0|
+
|0
3|=
|3|
+
|3|=
3
+
3=
6。
。。
1Bagging(包装法):优势:Bagging通过随机有放回地对训练数据进行采样,每个基分类器独立训练,然后通过投票或平均等方式进行集成,能够有效降低过拟合风险,提高模型的泛化能力。它尤其适合在高方差的模型上使用,如决策树等。局限性:对于高偏差的模型来说,Bagging可能无法显着改善模型性能。此外,由于基分类器的独立性,Bagging不容易处理存在较强相关性的数据,比如时间序列数据。使用场景:Bagging通常用于分类和回归问题,在数据集较大且噪声相对较小的情况下表现良好提升法):优势:Boosting通过迭代地训练一系列基分类器,并根据前一个分类器的性能对样本权重进行调整,使得基分类器逐渐关注于难以分类的样本。它能够有效提高模型的精度和泛化能力,尤其适合解决高偏差的问题。局限性:Boosting对噪声和异常值比较敏感,容易导致过拟合。此外,由于基分类器之间存在依赖关系,Boosting的训练过程相对较慢。使用场景:Boosting通常用于分类问题,在需要处理高偏差或低准确度的场景下表现出色堆叠法):优势:Stacking通过在多个基分类器上构建一个元分类器来进行集成,可以充分利用各个基分类器的预测结果,进一步提升性能。通过允许使用更复杂的元分类器,Stacking具有更强大的表达能力。局限性:Stacking的主要挑战在于选择合适的元特征以及使用交叉验证避免数据泄露。此外,Stacking通常需要更多的计算资源和时间来进行模型训练和预测。使用场景:Stacking适用于各类机器学习问题,并且在数据集相对较大、前期已经进行了一定特征工程的情况下效果较好。喜欢离语请大家收藏:
章节错误,点此报送(免注册),
报送后维护人员会在两分钟内校正章节内容,请耐心等待。